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The problem of minimizing the volume of two- and three-dimensional structures, subject to certain stress 

constraints, which are known as the conditions of strength theory and are used in practice for various 

materials, is considered. The control is achieved by adjusting the shape of the boundary. Cavities inside the 

design region are allowed, and the shape of the cavities is also optimized. Dual problems, constructed for 

such optimal design problems, can be used for estimates of optimal or nearly optimal designs. Examples of 

dual estimates for three optimal design problems are considered. 

1. STATEMENT OF THE PROBLEM 

WE HAVE previously introduced [l] the notions of the design region and the feasible region, and 
proved existence theorems for the first and second variations of the displacements of the elastic 
region. We denote by O(s, A) the set of feasible regions R Cs1”, where fi” is the design region (here 
0 < X < 1 and s is an integer characterizing the smoothness of the boundary I of the region s1[ 11). 

Let us formulate the optimal design problem. Suppose we are given the shear modulus l.r., 
Poisson’s ratio v, and the yield point u. of the material, the external load vector F acting on the part 
of the boundary IF’, and the section of the boundary TU”, where the displacements of the elastic 
region are zero. It is required to find 

inf J (II), I = Sdx, mEO(s, A) (1.1) 
u 

where u = uiei is the solution of the integral identity 

t Prikl. Mat. Mekh. Vol. 56, No. 3, pp. 434-441, 1992. 
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s ‘A(“,V)dX-- 
i-2 j 

F&dr = 0, vv E v (s-2) 
F 

V(S2)={V=Ui(X)EilUi~~,"'(S2), vi(y)=07 YE1lu) 

x=xieir A (U, V)=f&~hlEij(~)EhI(~) 

t?kl (V) = (iJu,/d&+a&/h-,) /2 
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(1.2) 

Here &kl are the elements of the strain tensor, ei are the unit vectors of the Cartesian system of 
coordinates, A(u, u) is twice the specific energy of elastic strain, a@[ are the components of the 
elastic constant tensor of the material and l&(“(fi) is the space of Sobolev’s functions [2]. Here and 
below we adopt the convention of summation from 1 to N (N = 2 or 3) over the repeating indices i, 
j, k, 1 in products. In the region a, the displacements u defined by the integral identity (1.2) should 
satisfy the constraints 

f(a) G/O (U=a(U)=Oij(u)Wj 

Uij=&jkLE*!) 

(1.3) 

where u is the stress tensor. The function f is either quadratic in the components of the tensor u or 
piecewise-linear in uz- the principal stresses of the tensor u(u) [3], and f. is a constant that depends 
on the elastic constants of the material and on u. . 

The constraints (1.3) suggest defining the set of functions 

v~(S1)={U~v(~)lf(~(U))~fo} (1.4) 

2. THE DUAL ESTIMATE 

To construct the dual problem, we form the Lagrange functional [4] 

The functional 

M (u, V) = S [l + A (U, v)] do - s FiuidI’ 

VREO(s,“A), VU~V,(Q), V&Q) 
M,(u)=sup M(u, v), Vv=V(CJ) 

(2.1) 

obviously takes finite values, equal to mesa, only for u that satisfy the integral identity (1.2). 
Now define the functional 

M,(V)=infM(u, V), VEij(U)ELZ(Q), VSkQ" (2.2) 
Here we do not assume that &ii(U) is generated by some displacement field u. Any function from 

L2 (Ln) may be taken as Ed. The set fl is only assumed to be measurable and is not necessarily a 
region. We have the following chain of inequalities: 

Mo(v)<supMO(v)=supinfM(u, v)G 

Gsup’inPM(u, v)GniP sup M(u, v) -inP W(u) (2.3) 

Here sup is over all vE V(W), inf is over all Q(U) E Lz(fi), fICW, sup’ stands for sup over all 
vE Vo(Q), and inf” stands for inf over all uE Vo(51), RE O(s, A). 

The first inequality in (2.3) is obvious; the third inequality follows from the interchangeability of sup and inf. 
Let us elucidate the second inequality. Any function VE V(n) for fi E O(s, A) can be continued in the region R 
and conversely VVE V(n’) can be restricted to a measurable set flC W. In the second inequality, inf” is over a 
narrower class of functions u than inf on the left-hand side, which proves the inequality. 

From inequality (2.3) it follows that VvE V(W), such that MO(V) > 0, and also the solution of the 
problem 

supMo(v), Vv=V(Q”) 
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are the dual estimates of the problem 

inf M”(u), Vu=V,(Q), VtkO(s, A) 

which is equivalent to problem (1.1). 
To construct the functional MO(v) we need to consider the problem of minimizing the integrand of 

the first integral in (2.1), 

inlx(a), f(a)Gfo, VxEQ” (2.4) 

3. THE DUAL PROBLEM WITH ENERGY CONSTRAINTS 

We will write twice the specific energy of elastic strain A(u, u) in terms of the stress tensor. Then 

f (0) =AijdJijdhl 

(3.1) 
e8j=Ai,kONt fo=UO*/[ 2p (l+V) ] 

The function x is linear in Us, and the infimum is therefore achieved on the boundary of the 
feasible stress region, i.e., f(a) = fi). Denote by 5 the Lagrange multiplier and form the Lagrange 
function 

From the necessary and sufficient condition for a minimum of @(a), 

dcD/dUij=e,j (V) +2~/lfj~rU~~=O 

it follows that 

E,j=-etj(v)/(2~) (3.2) 

Substituting E~ from (3.2) into (3.1) and equating the resulting expression to fo, we obtain 

5=g(v)/(2fo), inf y.(a)=l-g(v) 

gb)=IfhwH”’ 

From this formula we obtain 

M,(V) = S [l -g(V)]dX- I FiV*dr (3.3) 
Q, F 

vV=r(sr), Q,:=(x&-JO)g(v)>l} 

Theorem 1. Assume that the function v* E V(W) exists such that g(v*) = 1 for every XE R”, and 
there is a region fl* E O(s, A) such that the restriction of u * = -fav* to a* is the solution of the 
integral identity (1.2) for R* . Then R* , u* is an optimal solution of problem (1.1) 

Proof Since the function v* satisfies the conditions of the theorem, we have R, = 0 and 

Al, (v’) = - ” FiVi* dr 
1 

(3.4) 
F 

Substituting u = u*, v = v* into the integral identity (1.2), we obtain 

fo2 $ A (ant V*) dx = - fo J Fivi+ dI’ (3.5) 
F 

But g(v*> = [fd(v*, v*)] I’* = 1 and therefore from (3.4) we obtain , 
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l mesQ* = - 
s 

Fivi* dr 
1‘ F 

whence by (3.3) ,R*, u* is an optimal solution of problem (1.1). 

4. DUAL PROBLEMS WITH CONSTRAINTS ON OCTAHEDRAL STRESS 

In this case, 

1, N-3 andPSS 

I+ 2x9 - 29, PDS 
(4.1) 

where PSS stands for the plane stress state and PDS for the plane strain state, Z,(a) is the first 
invariant of the stress tensor, andfa = u02/(3~). We define the Lagrange function 

x(a) ‘l+elj(v)Urj+f[UijUij_tll’(a)/3] 

From the necessary and sufficient conditions for a minimum of x(a) we obtain 

erj (V) +2C [ Oij-~zt (U) &j/3] =O (4.2) 

where 6, is the Kronecker delta. Analysis shows that for N = 3 system (4.2) is degenerate. Adding 
Eqs (4.2) for i = j, we obtain 

I,(8(V))==O (4.3) 

If (4.3) is not satisfied, the function x(a)has no lower limit. If (4.3) is satisfied for N = 3, the system 
of equations (4.2) is consistent and has the solution 

U,--[eci(V),+&l/(25), up-e&)/(2f) (4.4) 

a = 

1 

arbitrary constant for N = 3 

I, (e(v)), for PSS 

(1 + 2v - 2v2) I, (e (v))/(l - 2vj2, for PDS 

Substituting crii from (4.4) into (4.1) and equating the right-hand side to fa, we find 

t-&)/C&), Xx(a) =i-g(v) (4.5) 

1 

[fj(u(v))]% Iv = 3 

g (v) = [h 0%) (VI ait (V) + I12 (8 (9) 2W PSS 
[fo ((Jij 6’) (Ji/ (~1 + 14 (a (vjjj (2~)-~1-? PDS 

In this case, Ma(v) is defined by relationships (3.4) and for N = 3 the function v should also satisfy 
the condition (4.3). 

5. DUAL PROBLEMS WITH CONSTRAINTS ON THE MAXIMUM SHEAR STRESS 

In this case [5], 

maxlui--11, N =3 

f(a) = max iI aI - u,l, Iwjh PSS 
2p max (1 e, - e, /,I ei 11, PDS 

where Ui(Ei) are the principal stresses (strains) of the tensor U(E), andfo = CT,, . 

(5.1) 
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Represent the function x in the form 

x(o) =l+orsrr (v) (5.2) 

For N = 3, the set of principal stresses defined by the inequality f(o) GfO is an infinite hexagonal 
prism making equal angles with the axes uk [5]. This set is unbounded, and problem (2.4) therefore 
has a lower-bounded solution if v satisfies condition (4.3). The function x(o) is linear in uk , and the 
minimum is therefore achieved on one of the six edges 

when it follows that 

inf X(0)=1-f. max]er(v) I (5.3) 

because the extremal value of E,&(v) is equal to one of the principal strains. 
For PSS, the set of principal stresses defined by the inequality f(a) =~fc is a hexagon. The function 

x(a) is linear, and its minimum is therefore achieved at one of the six extreme points 

u,=fh, uz=O, x=l%e,, (v) 

uI=-ffO, 0~*AI, x=l*fJ, (e (v) 1 

o,=O, uz=ffo, x=l*h2 (v) 

whence it follows that 

inf x(a)=l--j0 max{lek(v)l, Il,(e~v))l) (5.4) 

For PDS, the set of principal strains defined by the inequality f(a) <jO is also a hexagon in the 
plane of the principal strains. The function x represented in the form 

x=l+ehuhk(v) (5.5) 

is linear in &k and its minimum is therefore achieved at one of the six extreme points 

e,=fjo(21~)-‘, e2=0, ~=l*tf0u~~(v) (2p)-’ 

s,=ez=fjo(211)-‘, x=l*jJ, (o(v) ) (2cr) -’ 

e,=O, eZ-*j0(2u)-‘, x=l*jOozz(v) (2p)-’ 

whence we obtain 

infx(a)=l-fomax{lo*(v)l, Il,(u(v))l}(2p)-’ 

Using formulas (5.3), (5.4), (5.6), we define the function 

(5.6) 

i 

j,maxIek(v)], fi = 3 

R(~) = jomax ++&919 I MW)Ih PSS (5.7) 

j0 max {I ok (v) I, I 1, (a (9) 11, PDS 

Then M,(v) is defined by relationships (3.4), and for N = 3 the function v should additionally 
satisfy condition (4.3). 

6. DUAL PROBLEMS WITH CONSTRAINTS ON MAXIMUM STRESSES 

In this case, 

j(u)=max]uJ (6.1) 
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for N = 3, PSS, and PDS for Odv< l/2, andfo = uo. Solving problem (2.4) for x represented in the 
form (5.2), we find that the minimum is achieved at one of 2N extreme points of the set f(a) <f. and 
equals 

x(a) = 1 + fll$l [t Ekk (v)l (6.2) 
k$ 

Expression (6.2) is not invariant to the choice of coordinates. We will use the formula [3] 

ekh=ytti*P,* 

ek and the ith principal direction of E. Using the where yki is the cosine of the angle between 
estimate 

we obtain 

inf x (a) = 1 
i-1 

The dual functional k&,(v) is given by relationships (3.4). 

7. DUAL PROBLEMS WITH CONSTRAINTS ON MAXIMUM STRAINS 

(6-3) 

In this case, 

f(a.-e)==maXl Fi( 
(74 

for N = 3, PSS, and PDS for O~V< l/2, andf, = uo/[2(1 +v)F]. Using relationships (7.1) and (5.5) 
and the arguments and conclusions of Sec. 6, with ui and Q(V) replaced, respectively, by Ed and 
ai( we obtain 

g(v)= lo ~,u&9, (7.2) 
iz.1 

The dual functional k&(v) is defined by relationships (3.4). 

Theorem 2. Assume that the function v* E V(W) exists such that g(v*) d 1, A(v*, v*> = f3 for 
every xEfi”. The function g(v) is defined by (4.9, (5.7), (6.3) or (7.2) depending on the strength 
constraints. Suppose that the region R* E O(s, X) exists such that the restriction u* = -v*@ is the 
solution of the integral identity (1.2) for a*. Then R* , u* is an optimal solution of problem (1.1). 

Proof. At each point xEfi*, v* satisfies the equality g(v*) = 1. Thus, Cl, = 0 and 

’ MO (v*) = - 
s 

FiUi* dI’ (7.3) 
rF 

Substituting u = v = u* into the integral identity (1.2) for Cl = CL.*, we obtain 

fi-’ 1 A (V*, V*)dX = - pm1 

s 

Fivi*dI’ (7.4) 
u* F 

At each point XE a’, v* satisfies the equality A (v*, v*) = /3. Thus, from (7.4) we have 

mesR+ = - 
s 
l Fai*dI’ 

I’F 

(7.5) 
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Comparing (7.3) and (7.5), we obtain that R* , u* is an optimal solution of problem (1.1). 

Remark 1. The region a* E O(s, h) does not necessarily exist. Yet even if it does not exist, there may exist 
some infinite-dimensional region where the conditions of the theorem are satisfied. In this case, we can only 
speak of an achievable bound of the functional (1.1). 

remark 2. In the conditions of the theorem it is implied that the function v(x) in (4.5) and (5.7) for N = 3 
satisfies the equality (4.3). 

Example I. Let Sz’ be a square of side 2d, with a uniformly distributed compressive load of strength F applied 
on two of its edges. We assume that a plane state of strain is realized. Take vr* = art, v2* = --a.~~, where (Y is 
defined in terms of o. and u, depending on the stress constraints, from the equation g(v*) = 1. Substituting v* 
into the functional (3.4), we obtain 

:vo(V*) =2 Fad dI’=4aFd2 

-Ii 

Example 2. Let 52” be the region enclosed between two cylinders of radii a and b and length 1. A uniformly 
distributed load F is applied to the outer surface of the cylinder of radius 6, normal to the surface. On the 
surface of the cylinder of radius a, the displacements normd to the surface are zero. Let 

where R, cp and z are cylindrical coordinates. For this vector v* we have 

eh=-a(-$+$), %=a(+--$), es=5 

and thus It(~(v*)) = 0. The constant 01 is obtained from the inequality g(v*)s 1 depending on u and uo. 
Substituting v* into the functional (3.4), we obtain 

:n I 

.ni,(v*)= - JJaF(~-~)bdrd~=_ZMP~~-a2)z 
0 0 

Example 3. Let Cl0 be the parallelepiped -c <x1 CC, -c<x~<c, O<x3<d~, the surface rU lies in the plane 
x3 = 0 and is defined by the inequalities -c<xt < c, -c < x2 < c, and I,’ lies in the plane x3 = dJ and is defined 
by the inequalities -d112<xl<dlf2, -d2f2-a2<d2f2. The load on the surface IP is given by 
F = Fws yez + Fsin ye,, where F is a positive constant. We assume that c > d, + d2 + d3. 

To find the dual estimate, consider the augmented problem, which differs from the previous one by a wider 
class of functions: ur#O on I,“. For this problem, and therefore for the original problem, the dual estimate 
may be obtained for vi* = 6i.r;) where 

B~=-fls, &r=a ~0s r/A, b=a ain y/(M) 
A== (cos2y+.t~4sin2y) ‘A 

and a is defined in terms of v and cro, depending on the stress wnstraints, from the equation g(v*) = 1. 
Substituting v* into the functional (3.4), we obtain 

1. 

2. 
3. 
4. 
5. 

Mo(v’) =Pd,d&aA 
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